These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autocrine activation of EGF receptor promotes oscillation of glutamate-induced calcium increase in astrocytes cultured in rat cerebral cortex.
    Author: Morita M, Kozuka N, Itofusa R, Yukawa M, Kudo Y.
    Journal: J Neurochem; 2005 Nov; 95(3):871-9. PubMed ID: 16135076.
    Abstract:
    We previously reported that astrocytes cultured for more than 2 days in a defined medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) showed calcium oscillation in response to glutamate, whereas the response pattern was transient in the absence of the exogenous growth factors. In the present study, we found that astrocytes showed glutamate-induced calcium oscillation, even in growth factor-free medium, if the cells had been cultured for more than 5 days. The calcium oscillation promoted by the prolonged culture period was suppressed by an inhibitor of EGF receptor tyrosine kinase, but not by a neutralizing antibody to bFGF, indicating that the accumulation of an autocrine factor that activates the EGF receptor leads to calcium oscillation. Astrocytes in our culture system expressed EGF, transforming growth factor alpha (TGFalpha), bFGF and acidic fibroblast growth factor (aFGF). Exogenous aFGF, which induced astrocyte immediate early gene expression to the same extent as EGF or bFGF, did not affect calcium oscillation. Exogenous EGF and bFGF promoted astrocyte hypertrophic morphology and proliferation, as well as calcium oscillation. In contrast, these properties did not accompany calcium oscillation induced by the prolonged culture period. These results suggest that astrocytes possess the ability to promote their own calcium oscillation, which is independent of hypertrophic changes to reactive astrocytes.
    [Abstract] [Full Text] [Related] [New Search]