These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface.
    Author: Grandin HM, Städler B, Textor M, Vörös J.
    Journal: Biosens Bioelectron; 2006 Feb 15; 21(8):1476-82. PubMed ID: 16137877.
    Abstract:
    A novel biosensing and imaging technique, the waveguide excitation fluorescence microscope, has been developed for the dynamic and quantitative investigation of bio-interfacial events in situ, ranging from ligand-receptor binding to focal adhesion formation in cell-surface interactions. The technique makes use of the evanescent field created when light travels in a mono-mode, planar optical waveguide to excite fluorescence in the near interface region. Advantages of the technique include high target sensitivity for fluorescence detection (femtomolar range), high surface specificity (ca. 100 nm perpendicular to the waveguide), large area analysis with submicron resolution, 'built-in' calibration of fluorescent light gain, and the capability to perform multi-colour imaging in situ and in real time. In this work, the sensitivity of the system has already been demonstrated through dynamic measurements of the streptavidin-biotin binding event to below 20 pM concentrations, signal to noise comparisons with conventional fluorescence microscopy have shown more than a 10-fold improvement, and surface specificity of the technique has also been illustrated in a comparison of fibroblast focal adhesion images. Thus, this new tool can be used to illuminate processes occurring at the interface between biology and synthetic surfaces in a unique manner.
    [Abstract] [Full Text] [Related] [New Search]