These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epitaxial deposition of calcium oxalate on uric acid rich stone matrix is induced by a 29 kDa protein.
    Author: Srinivasan S, Kalaiselvi P, Varalakshmi P.
    Journal: Clin Chim Acta; 2006 Feb; 364(1-2):267-74. PubMed ID: 16139257.
    Abstract:
    BACKGROUND: Association of macromolecules particularly the role of proteins in urolithiasis has been studied for last few centuries, but still a complete profile of stone matrix proteins that mediate co-precipitation of uric acid and calcium oxalate has not been characterized. We isolated and characterize proteins from uric acid rich stone matrix, which have oxalate binding activity. METHODS: Matrix proteins were isolated from uric acid rich stone matrix using EDTA as a demineralizing agent. The radiolabelled solubilized proteins were fractionated with increasing ionic concentration by DEAE cellulose column chromatography to identify the oxalate binding protein. It was purified using Sephadex G-200 column chromatography. Amino acid composition was determined and monoclonal antibody was produced against the oxalate binding uric acid rich stone matrix protein. Urinary uric acid binding proteins were isolated from stone formers urine, their oxalate binding activity assayed and cross reactivity with the produced monoclonal antibody were checked using ELISA and Western blotting. RESULTS: Matrix on DEAE column chromatography elution yielded 3 protein peaks and they were named as fraction I, II and III among which fraction I had higher oxalate binding activity which was further purified with Sephadex G-200 column which yielded 2 protein peaks designated as Ia and Ib. Fraction Ib with molecular weight 29 kDa exhibited the maximum oxalate binding activity. Forty percent of this 29 kDa protein is comprised of basic amino acids. Monoclonal antibody (IgG1) was produced against the 29 kDa stone matrix protein. Urinary uric acid binding proteins were isolated from stone formers, 4 protein peaks were obtained named as fraction I to IV. Among them, fraction IV having molecular weight of approximately 29 kDa cross reacted up to 85.6% with 29 kDa stone matrix protein. Moreover, urinary 29 kDa protein exhibited oxalate binding activity of 94.16 +/- 6.08 pmol/mg protein at pH 5.5. CONCLUSION: The 29 kDa protein isolated from uric acid rich stone matrix and urine are one and the same, thereby insinuating that 29 kDa protein might play a major role in epitaxial deposition of calcium oxalate over uric acid core, consequently favoring the lithogenic events like uric acid and calcium oxalate nucleation, aggregation and retention.
    [Abstract] [Full Text] [Related] [New Search]