These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of moisture on glass transition and microstructure of glycerol-plasticized soy protein.
    Author: Chen P, Zhang L, Cao F.
    Journal: Macromol Biosci; 2005 Sep 16; 5(9):872-80. PubMed ID: 16143997.
    Abstract:
    The glass transition behavior of the glycerol-plasticized soy protein sheets (SL series) at various relative humidity (RH) was investigated by using differential scanning calorimetry with the aluminum pan and O-ring-sealed stainless steel capsule, and the microstructure of these sheets was detected on small-angle X-ray scattering. The results revealed that there were three glass transitions (Tg1, Tg2 and Tg3), corresponding to glycerol-rich, protein-rich and protein-water domains, in the protein-glycerol-water ternary system. The Tg1 values of the SL-series sheets at 75% RH decreased from -49.3 to -83.8 degrees C with an increase of glycerol content from 10 to 50 wt.-%, whereas Tg2 and Tg3 were almost invariable at about 60 degrees C and 3 degrees C, respectively. In addition, the Tg1, Tg2 and Tg3 values of the SL-25 containing 25 wt.-% glycerol at 0%, 35%, 58%, 75% and 98% RH were in the range of -12.7 - -83.2 degrees C, 65.8 - 53.1 degrees C and 3.5 - 1.9 degrees C, respectively. The result from small-angle X-ray scattering indicated that the radii of gyration (Rg) of protein-rich domain were in the range of 60-63 nm; this suggested the existence of protein macromolecules as aggregates in the stable protein-rich and protein-water domains. With an increase of RH, the tensile strength and Tg values of the SL-series sheets decreased, but the elongation at break increased. In view of the results above, the moisture in ambient environment significantly influenced the Tg values and microstructures of the glycerol-plasticized soy protein sheets, leading to the changes of the mechanical and thermal properties.
    [Abstract] [Full Text] [Related] [New Search]