These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pyruvate kinase revisited: the activating effect of K+. Author: Oria-Hernández J, Cabrera N, Pérez-Montfort R, Ramírez-Silva L. Journal: J Biol Chem; 2005 Nov 11; 280(45):37924-9. PubMed ID: 16147999. Abstract: For more than 50 years, it has been known that K(+) is an essential activator of pyruvate kinase (Kachmar, J. F., and Boyer, P. D. (1953) J. Biol. Chem. 200, 669-683). However, the role of K(+) in the catalysis by pyruvate kinase has not been totally understood. Previous studies without K(+) showed that the affinity of ADP-Mg(2+) depends on the concentration of phosphoenolpyruvate, although the kinetics of the enzyme at saturating K(+) concentrations show independence in the binding of substrates (Reynard, A. M., Hass, L. F., Jacobsen, D. D. & Boyer, P. D. (1961) J. Biol. Chem. 236, 2277-2283). Here, we explored the kinetics of the enzyme with and without K(+). The results show that without K(+), the kinetic mechanism of pyruvate kinase changes from random to ordered with phosphoenol-pyruvate as first substrate. V(max) with K(+) was about 400 higher than without K(+). In the presence of K(+), the affinities for phosphoenol-pyruvate, ADP-Mg(2+), oxalate, and ADP-Cr(2+) were 2-6-fold higher than in the absence of K(+). This as well as fluorescence data also indicate that K(+) is involved in the acquisition of the active conformation of the enzyme, allowing either phosphoenolpyruvate or ADP to bind independently (random mechanism). In the absence of K(+), ADP cannot bind to the enzyme until phosphoenolpyruvate forms a competent active site (ordered mechanism). We propose that K(+) induces the closure of the active site and the arrangement of the residues involved in the binding of the nucleotide.[Abstract] [Full Text] [Related] [New Search]