These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Auditory responses in the cochlear nucleus of awake mustached bats: precursors to spectral integration in the auditory midbrain. Author: Marsh RA, Nataraj K, Gans D, Portfors CV, Wenstrup JJ. Journal: J Neurophysiol; 2006 Jan; 95(1):88-105. PubMed ID: 16148270. Abstract: In the cochlear nucleus (CN) of awake mustached bats, single- and two-tone stimuli were used to examine how responses in major CN subdivisions contribute to spectrotemporal integrative features in the inferior colliculus (IC). Across CN subdivisions, the proportional representation of frequencies differed. A striking result was the substantial number of units tuned to frequencies <23 kHz. Across frequency bands, temporal response patterns, latency, and spontaneous discharge differed. For example, the 23- to 30-kHz representation, which comprises the fundamental of the sonar call, had an unusually high proportion of units with onset responses (39%) and low spontaneous rates (53%). Units tuned to 58-59 kHz, corresponding to the sharply tuned cochlear resonance, had slightly but significantly longer latencies than other bands. In units tuned to frequencies >30 kHz, 31% displayed a secondary excitatory peak, usually between 10 and 22 kHz. The secondary peak may originate in cochlear mechanisms for some units, but in others it may result from convergent input onto CN neurons. In 20% of units tested with two-tone stimuli, suppression of best frequency (BF) responses was tuned at least an octave below BF. These properties may underlie similar IC responses. However, other forms of spectral interaction present in IC were absent in CN: we found no facilitatory combination-sensitive interactions and very few combination-sensitive inhibitory interactions of the dominant IC type in which inhibition was tuned to 23-30 kHz. Such interactions arise above CN. Distinct forms of spectral integration thus originate at different levels of the ascending auditory pathway.[Abstract] [Full Text] [Related] [New Search]