These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of low density lipoprotein receptor expression by long-term exposure to phorbol ester via p38 mitogen-activated protein kinase pathway.
    Author: Oh J, Choi YS, Kim JW, Park JY, Kim SW, Park KK, Pak YK.
    Journal: J Cell Biochem; 2005 Nov 01; 96(4):786-94. PubMed ID: 16149074.
    Abstract:
    The proximal region -234 to (+58 bp) of low-density lipoprotein receptor (LDLR) is responsible for its up-regulation by sterol regulatory element binding protein (SREBP). However, the mechanism of sterol-independent repression of LDLR has not been determined yet. In this study, we observed that there was an early induction and a later repression of LDLR by phorbol ester (PMA) in SK-Hep1 hepatocarcinoma cells and investigated the mechanisms through which PMA repressed LDLR transcription. SK-Hep1 cells were exposed to PMA and LDLR mRNA was evaluated by RT-PCR and Northern blot analysis. The effect of phorbol ester on LDLR transcriptional activity was studied using transient transfection of LDLR promoter-luciferase constructs. Overexpression of N-SREBP-2, a dominant positive SREBP2, did not reverse the PMA-repressed LDLR promoter activity. Serial deletion of LDLR promoter revealed that the region between -1,563 and -1,326 was responsible for the repression. The pretreatment with SB202190, an inhibitor for p38 mitogen-activated protein kinase pathway (p38-MAPK), but not other signaling inhibitors, reversed the PMA-induced repression. The 24 h-treatment with PMA efficiently arrested the SK-Hep1 cell cycle at G0/G1 as demonstrated by FACS analysis and decreased the 3H-thymidine incorporation. The PMA-induced repression of LDLR transcription may be exerted by the factor(s), not SREBP2, induced or modified by p38-MAPK-mediated signaling pathway and associated with cell cycle blockage.
    [Abstract] [Full Text] [Related] [New Search]