These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct energy delivery improves tissue perfusion after resuscitated shock.
    Author: Zakaria el R, Ehringer WD, Tsakadze N, Li N, Garrison RN.
    Journal: Surgery; 2005 Aug; 138(2):195-203. PubMed ID: 16153427.
    Abstract:
    BACKGROUND: Conventional resuscitation (CR) from hemorrhagic shock (HS) does not restore intestinal blood flow. Indicators of anaerobic metabolism suggest that cellular energy production also is compromised. We hypothesize that the direct intravenous delivery of lipid-encapsulated high-energy phosphates to cells improves intestinal perfusion during HS and resuscitation (RES). METHODS: MAP (MAP) was monitored in male rats (200 g), terminal ileum microvessel diameters were measured by in vivo videomicroscopy, and blood flow (Doppler velocimetry) was calculated. Cellular energy delivery was accomplished by intravenous infusion during RES of fusogenic unilamellar lipid vesicles that contain adenosine triphosphate (ATP; VitaSol). Our protocol was HS to 50% baseline MAP for 60 minutes, 30 minutes of RES, and continued microscopy observation for 120 minutes. Experimental groups (n=8 each) were HS+CR (group I); HS+CR+ VitaSol (group II); HS+CR+Vehicle, Vehicle is the phospholipid vesicles without magnesium ATP, (group III); HS+ VitaSol (group IV); sham-operated control+VitaSol (group V); and a time-matched sham-operated control (group VI). The survival outcome and total tissue water from wet weight/dry weight ratio as a function of adjunct VitaSol resuscitation were evaluated in separate intact animal experiments. RESULTS: HS caused a selective vasoconstriction of the intestinal inflow arterioles (100 microm), which was not seen in the smaller intestinal premucosal arterioles (7-15 microm). CR, which restored baseline hemodynamics, resulted in an initial restoration of intestinal microvascular diameters at all arteriolar levels. However, this was followed by a progressive vasoconstriction and hypoperfusion in premucosal vessels at 120 minutes after RES (-20.48% +/- 2.95% from baseline diameters). In contrast, VitaSol with CR caused enhanced premucosal dilation (+34.27% +/- 4.62%) and augmented flow (+20.50% +/- 10.70%) above prehemorrhage baseline. Vesicles alone had no effect, and VitaSol alone caused only a modest dilation. CR of moderate HS (40% of baseline MAP for 60 minutes, n=10) caused 20% mortality, whereas adjunct VitaSol resuscitation had a 100% survival and less tissue water content. CONCLUSIONS: Our data confirms that CR causes progressive intestinal hypoperfusion. Cellular resuscitation with direct intravenous energy delivery improves intestinal perfusion after CR and results in improved survival and less tissue edema.
    [Abstract] [Full Text] [Related] [New Search]