These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Co-contraction recruitment and spinal load during isometric trunk flexion and extension.
    Author: Granata KP, Lee PE, Franklin TC.
    Journal: Clin Biomech (Bristol); 2005 Dec; 20(10):1029-37. PubMed ID: 16154249.
    Abstract:
    BACKGROUND: Pushing and pulling tasks account for 20% of occupational low-back injury claims. Primary torso muscle groups recruited during pushing tasks include rectus abdominis and the external obliques. However, analyses suggest that antagonistic co-contraction of the paraspinal muscles is necessary to stabilize the spine during flexion exertions. The study quantified co-contraction and spinal load differences during isometric flexion and extension exertions. The goal was to provide insight into the mechanisms requiring greater co-contraction during trunk flexion exertions compared to extension exertions. METHODS: Electromyographic (EMG) signals were recorded from the trunk muscles of healthy volunteers during isometric trunk flexion and extension exertions. A biomechanical model was implemented to estimate total muscle force from the measured EMG and trunk moment data. A similar model estimated the muscle forces necessary to achieve equilibrium while minimizing the sum of squared muscle forces. The difference in these forces represented co-contraction. Spinal load attributed to co-contraction was computed. RESULTS: Average co-contraction during flexion exertions was approximately twice the value of co-contraction during extension, i.e. 28% and 13% of total muscle forces respectively. Co-contraction accounted for up to 47% of the total spinal load during flexion exertions. Consequently, spinal compression during the flexion tasks was nearly 50% greater than during extension exertions despite similar levels of trunk moment. INTERPRETATION: Co-contraction must be considered when evaluating spinal load during pushing exertions. Results underscore the need to consider neuromuscular control of spinal stability when evaluating the biomechanical risks.
    [Abstract] [Full Text] [Related] [New Search]