These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Energetic costs of diving and thermal status in European shags (Phalacrocorax aristotelis).
    Author: Enstipp MR, Grémillet D, Lorentsen SH.
    Journal: J Exp Biol; 2005 Sep; 208(Pt 18):3451-61. PubMed ID: 16155218.
    Abstract:
    Diving is believed to be very costly in cormorants (Phalacrocoracidae) when compared with other avian divers because of their poor insulation and less-efficient foot propulsion. It was therefore suggested that cormorants might employ a behavioural strategy to reduce daily energy expenditure by minimizing the amount of time spent in water. However, European shags (Phalacrocorax aristotelis) have been observed to spend up to 7 h day(-1) diving in water of around 5-6 degrees C. To gain a better understanding of the energetic requirements in European shags, we measured their metabolic rates when resting in air/water and during shallow diving using respirometry. To investigate the effects of water temperature and feeding status on metabolic rate, birds dived at water temperatures ranging from 5 to 13 degrees C in both post-absorptive and absorptive states. In parallel with respirometry, stomach temperature loggers were deployed to monitor body temperature. Basal metabolic rate (BMR) was almost identical to allometric predictions at 4.73 W kg(-1). Metabolic rate when resting on water, during diving and after feeding was significantly elevated when compared with the resting-in-air rate. During diving, the metabolic rate of post-absorptive shags increased to 22.66 W kg(-1), which corresponds to 4.8x BMR. Minimum cost of transport (COT) was calculated at 17.8 J kg(-1) m(-1) at a swim speed of 1.3 m s(-1). Feeding before diving elevated diving metabolic rate by 13% for up to 5 h. There was a significant relationship between diving metabolic rate and water temperature, where metabolic rate increased as water temperature declined. Thermal conductance when resting in air at 10-19 degrees C was 2.05 W m(-2) degrees C(-1) and quadrupled during diving (7.88 W m(-2) degrees C(-1)). Stomach temperature when resting in air during the day was 40.6 degrees C and increased during activity. In dive trials lasting up to 50 min, stomach temperature fluctuated around a peak value of 42.0 degrees C. Hence, there is no evidence that European shags might employ a strategy of regional hypothermia. The energetic costs during shallow diving in European shags are considerably lower than has previously been reported for great cormorants (Phalacrocorax carbo) and are comparable to other foot-propelled divers. The lower dive costs in shags might be the consequence of a more streamlined body shape reducing hydrodynamic costs as well as a greater insulative plumage air layer (estimated to be 2.71 mm), which reduces thermoregulatory costs. The latter might be of great importance for shags especially during winter when they spend extended periods foraging in cold water.
    [Abstract] [Full Text] [Related] [New Search]