These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo hemodynamic responses to thoracic artificial lung attachment. Author: Perlman CE, Cook KE, Seipelt JR, Mavroudis JC, Backer JC, Mockros LF. Journal: ASAIO J; 2005; 51(4):412-25. PubMed ID: 16156308. Abstract: A thoracic artificial lung (TAL) was attached to the pulmonary circulation in a porcine model. Proximal main pulmonary artery (PA) blood flow, in part or whole, was diverted to the TAL, and TAL outlet blood flow was split between the distal main PA and left atrium (LA). The right ventricle (RV) drove blood flow through the combined TAL/natural lung (NL) pulmonary system. Selective banding placed the TAL in parallel with the NLs, in series with the NLs, or in an intermediary hybrid configuration. Parallel TAL attachment lowered pulmonary system impedance, raised cardiac output (CO), and provided the greatest TAL blood flow rate, but reduced the NL blood flow rate which is important for pulmonary embolic clearance and metabolic blood processing. Hybrid or series TAL attachment raised pulmonary system impedance, lowered CO, increased RV oxygen consumption, and reduced RV oxygen supply. Redesign of the PA anastomoses, TAL inlet graft, and TAL entrance and exit would significantly improve hemodynamics and RV function with TAL attachment. Mean LA pressure increased throughout the experiment, which may indicate damage caused by graft attachment to the LA. Pulmonary resistance-flow rate curves may enable clinical prediction of tolerable TAL attachment configurations.[Abstract] [Full Text] [Related] [New Search]