These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural determinants of L-type channel activation in segment IIS6 revealed by a retinal disorder.
    Author: Hohaus A, Beyl S, Kudrnac M, Berjukow S, Timin EN, Marksteiner R, Maw MA, Hering S.
    Journal: J Biol Chem; 2005 Nov 18; 280(46):38471-7. PubMed ID: 16157588.
    Abstract:
    The mechanism of channel opening for voltage-gated calcium channels is poorly understood. The importance of a conserved isoleucine residue in the pore-lining segment IIS6 has recently been highlighted by functional analyses of a mutation (I745T) in the Ca(V)1.4 channel causing severe visual impairment (Hemara-Wahanui, A., Berjukow, S., Hope, C. I., Dearden, P. K., Wu, S. B., Wilson-Wheeler, J., Sharp, D. M., Lundon-Treweek, P., Clover, G. M., Hoda, J. C., Striessnig, J., Marksteiner, R., Hering, S., and Maw, M. A. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 7553-7558). In the present study we analyzed the influence of amino acids in segment IIS6 on gating of the Ca(V)1.2 channel. Substitution of Ile-781, the Ca(V)1.2 residue corresponding to Ile-745 in Ca(V)1.4, by residues of different hydrophobicity, size and polarity shifted channel activation in the hyperpolarizing direction (I781P > I781T > I781N > I781A > I781L). As I781P caused the most dramatic shift (-37 mV), substitution with this amino acid was used to probe the role of other residues in IIS6 in the process of channel activation. Mutations revealed a high correlation between the midpoint voltages of activation and inactivation. A unique kinetic phenotype was observed for residues 779-782 (LAIA) located in the lower third of segment IIS6; a shift in the voltage dependence of activation was accompanied by a deceleration of activation at hyperpolarized potentials, a deceleration of deactivation at all potentials (I781P and I781T), and decreased inactivation. These findings indicate that Ile-781 substitutions both destabilize the closed conformation and stabilize the open conformation of Ca(V)1.2. Moreover there may be a flexible center of helix bending at positions 779-782 of Ca(V)1.2. These four residues are completely conserved in high voltage-activated calcium channels suggesting that these channels may share a common mechanism of gating.
    [Abstract] [Full Text] [Related] [New Search]