These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigations into seed dormancy in Grevillea linearifolia, G. buxifolia and G. sericea: anatomy and histochemistry of the seed coat.
    Author: Briggs CL, Morris EC, Ashford AE.
    Journal: Ann Bot; 2005 Nov; 96(6):965-80. PubMed ID: 16157632.
    Abstract:
    BACKGROUND AND AIMS: Seeds of east Australian Grevillea species generally recruit post-fire; previous work showed that the seed coat was the controller of dormancy in Grevillea linearifolia. Former studies on seed development in Grevillea have concentrated on embryology, with little information that would allow testing of hypotheses about the breaking of dormancy by fire-related cues. Our aim was to investigate structural and chemical characteristics of the seed coat that may be related to dormancy for three Grevillea species. METHODS: Seeds of Grevillea linearifolia, Grevillea buxifolia and Grevillea sericea were investigated using gross dissection, thin sectioning and histochemical staining. Water movement across the seed coat was tested for by determining the water content of embryos from imbibed and dry seeds of G. sericea. Penetration of intact seeds by Lucifer Yellow was used to test for internal barriers to diffusion of high-molecular-weight compounds. KEY RESULTS: Two integuments were present in the seed coat: an outer testa, with exo-, meso- and endotestal (palisade) layers, and an inner tegmen of unlignified sclerenchyma. A hypostase at the chalazal end was a region of structural difference in the seed coat, and differed slightly among the three species. An internal cuticle was found on each side of the sclerenchyma layer. The embryos of imbibed seeds had a water content six times that of dry seeds. Barriers to diffusion of Lucifer Yellow existed at the exotestal and the endotestal/hypostase layers. CONCLUSIONS: Several potential mechanisms of seed coat dormancy were identified. The embryo appeared to be completely surrounded by outer and inner barriers to diffusion of high-molecular-weight compounds. Phenolic compounds present in the exotesta could interfere with gas exchange. The sclerenchyma layer, together with strengthening in the endotestal and exotestal cells, could act as a mechanical constraint.
    [Abstract] [Full Text] [Related] [New Search]