These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diverse functions of spindle assembly checkpoint genes in Saccharomyces cerevisiae. Author: Daniel JA, Keyes BE, Ng YP, Freeman CO, Burke DJ. Journal: Genetics; 2006 Jan; 172(1):53-65. PubMed ID: 16157669. Abstract: The spindle assembly checkpoint regulates the metaphase-to-anaphase transition from yeast to humans. We examined the genetic interactions with four spindle assembly checkpoint genes to identify nonessential genes involved in chromosome segregation, to identify the individual roles of the spindle assembly checkpoint genes within the checkpoint, and to reveal potential complexity that may exist. We used synthetic genetic array (SGA) analysis using spindle assembly checkpoint mutants mad1, mad2, mad3, and bub3. We found 228 synthetic interactions with the four spindle assembly checkpoint mutants with substantial overlap in the spectrum of interactions between mad1, mad2, and bub3. In contrast, there were many synthetic interactions that were common to mad1, mad2, and bub3 that were not shared by mad3. We found shared interactions between pairs of spindle assembly checkpoint mutants, suggesting additional complexity within the checkpoint and unique interactions for all of the spindle assembly checkpoint genes. We show that most genes in the interaction network, including ones with unique interactions, affect chromosome transmission or microtubule function, suggesting that the complexity of interactions reflects diverse roles for the checkpoint genes within the checkpoint. Our analysis expands our understanding of the spindle assembly checkpoint and identifies new candidate genes with possible roles in chromosome transmission and mitotic spindle function.[Abstract] [Full Text] [Related] [New Search]