These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nature of DNA lesions induced in human hepatoma cells, human colonic cells and human embryonic lung fibroblasts by the antiretroviral drug 3'-azido-3'-deoxythymidine.
    Author: Slamenová D, Horváthová E, Bartková M.
    Journal: Mutat Res; 2006 Jan 29; 593(1-2):97-107. PubMed ID: 16165166.
    Abstract:
    This study tried to clarify the question if nuclear genotoxicity played a role in 3'-azido-3'-deoxythymidine (AZT) toxicity. We investigated cytotoxic and DNA-damaging effects of AZT on human hepatoma HepG2 and human colonic CaCo-2 cells as well as on human diploid lung fibroblasts HEL. The amount of induced DNA damage was measured by standard alkaline single cell gel electrophoresis (SCGE). The nature of induced DNA lesions was evaluated (1) by modified SCGE, which includes treatment of lysed cells with DNA repair enzymes Endo III and Fpg and enables to recognize oxidized bases of DNA, and (2) by SCGE processed in parallel at pH 13.0 (standard technique) and pH 12.1, which enables to recognize alkali labile DNA lesions and direct DNA strand breaks. Cytotoxicity of AZT was evaluated by the trypan blue exclusion technique. Our findings showed that 3-h treatment of cells with AZT decreased the viability of all cell lines studied. SCGE performed in the presence of DNA repair enzymes proved that AZT induced oxidative lesions to DNA in all cell types. In hepatoma HepG2 cells and embryonic lung fibroblasts HEL the majority of AZT-induced DNA strand breaks were pH-independent, i.e. they were identified at both pH values (12.1 and 13.0). These DNA lesions represented direct DNA breaks. In colonic Caco-2 cells DNA lesions were converted to DNA strand breaks particularly under strong alkaline conditions (pH>13.0), which is characteristic for alkali-labile sites of DNA. DNA strand break rejoining was investigated by the standard comet assay technique during 48 h of post-AZT-treatment in HepG2 and Caco-2 cells. The kinetics of DNA rejoining, considered an indicator of DNA repair, revealed that AZT-induced DNA breaks were repaired in both cell types slowly, though HepG2 cells seemed to be more repair proficient with respect to AZT-induced DNA lesions.
    [Abstract] [Full Text] [Related] [New Search]