These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells.
    Author: Chauhan D, Li G, Podar K, Hideshima T, Neri P, He D, Mitsiades N, Richardson P, Chang Y, Schindler J, Carver B, Anderson KC.
    Journal: Cancer Res; 2005 Sep 15; 65(18):8350-8. PubMed ID: 16166312.
    Abstract:
    Human multiple myeloma is a presently incurable hematologic malignancy, and novel biologically based therapies are urgently needed. GCS-100 is a polysaccharide derived from citrus pectin in clinical development for the treatment of cancer. Here we show that GCS-100 induces apoptosis in various multiple myeloma cell lines, including those resistant to dexamethasone, melphalan, or doxorubicin. Examination of purified patient multiple myeloma cells showed similar results. Specifically, GCS-100 decreases viability of bortezomib/PS-341-resistant multiple myeloma patient cells. Importantly, GCS-100 inhibits multiple myeloma cell growth induced by adhesion to bone marrow stromal cells; overcome the growth advantage conferred by antiapoptotic protein Bcl-2, heat shock protein-27, and nuclear factor-kappaB; and blocks vascular endothelial growth factor-induced migration of multiple myeloma cells. GCS-100-induced apoptosis is associated with activation of caspase-8 and caspase-3 followed by proteolytic cleavage of poly(ADP-ribose) polymerase enzyme. Combined with dexamethasone, GCS-100 induces additive anti-multiple myeloma cytotoxicity associated with mitochondrial apoptotic signaling via release of cytochrome c and Smac followed by activation of caspase-3. Moreover, GCS-100 + dexamethasone-induced apoptosis in multiple myeloma cells is accompanied by a marked inhibition of an antiapoptotic protein Galectin-3, without significant alteration in Bcl-2 expression. Collectively, these findings provide the framework for clinical evaluation of GCS-100, either alone or in combination with dexamethasone, to inhibit tumor growth, overcome drug resistance, and improve outcome for patients with this universally fatal hematologic malignancy.
    [Abstract] [Full Text] [Related] [New Search]