These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiparasitic and immunomodulatory effect of innovative treatments against Myxobolus sp. infection in Diplodus puntazzo. Author: Karagouni E, Athanassopoulou F, Lytra A, Komis C, Dotsika E. Journal: Vet Parasitol; 2005 Dec 10; 134(3-4):215-28. PubMed ID: 16169152. Abstract: The potential antiparasitic and immunomodulatory effect of three treatments against myxosporean parasites on the innate immune system of sharpsnout sea bream (Diplodus puntazzo) was investigated. Fish naturally infected with Myxobolus sp. (Bivalvulida/Platysporina), a histozoic parasite mainly affecting the renal interstitial tissue, were treated by oral administration of a combination of salinomycin with amprolium, Origanum essential oil or fumagillin in a small-scale field trial. Various leucocyte functions influenced by myxosporean infection were examined in order to determine treatment effects on leucocyte immunocompetence of treated fish. One month post treatment all drugs caused a significant decrease in prevalence and intensity of infection in comparison to untreated, infected fish. The effect was most prominent in salinomycin with amprolium treated fish, which 1-month post treatment contained either no cysts at all or a few spores free in melanomacrophage centres revealing almost total elimination of the parasite and the antiparasitic action of the treatment. There was no histopathological evidence of drug toxicity. Antiparasitic action was accompanied by a significant enhancement of phagocytic activity demonstrated by ingestion of large numbers of latex beads and the secretion of high levels of reactive nitrogen intermediates by phagocytes in vitro. Complete restoration of the diminished mitogenic responses and serum lysozyme secretion was also detected in salinomycin with amprolium-treated fish compared to untreated, infected fish. These data suggest that salilomycin with amprolium may be a promising treatment for myxosporean infections in intensively cultured warm-water fish, exhibiting action partially via the enhancement of host, innate immune functions and leading to parasite elimination.[Abstract] [Full Text] [Related] [New Search]