These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and biological evaluation of diethylenetriamine pentaacetic acid-polyethylene glycol-folate: a new folate-derived, (99m)Tc-based radiopharmaceutical.
    Author: Liu M, Xu W, Xu LJ, Zhong GR, Chen SL, Lu WY.
    Journal: Bioconjug Chem; 2005; 16(5):1126-32. PubMed ID: 16173789.
    Abstract:
    (99m)Technetium-labeled diethylenetriamine pentaacetic acid-polyethylene glycol-folate (DTPA-PEG-folate) was synthesized and tested as a radiopharmaceutical agent, which targeted the lymphatic system with metastatic tumor. Folic acid was reacted with H2N-PEG-NH2 to yield H2N-PEG-folate. After purification by anion-exchange chromatography, the product was reacted with cyclic DTPA. By removal of unreacted DTPA by size-exclusion chromatography, DTPA-PEG-Folate was obtained. Fluorescein-5-isothiocyanate (FITC)-labeled DTPA-PEG-folate and DTPA-PEG-OCH3 were prepared via a dicyclohexylcarbodiimide-mediated coupling. In vitro competitive binding test showed that the uptake of [125I] folic acid was inhibited by DTPA-PEG-folate and the 50% inhibitory concentration was 4.37 pmol/L (R2 = 0.9922). The relative affinity of DTPA-PEG-FITC was 0.18 for human folate receptor comparing with folic acid. In cultured tumor cells, uptake of fluorescence-labeled DTPA-PEG-folate was found to increase significantly in folate-deficient medium compared with that of untargeted DTPA-PEG-OCH3 and FITC-ethylenediamine. The competition with free folic acid blocked the cell uptake of DTPA-PEG-folate. These results confirmed the DTPA-PEG-folate entered into KB cells through the folate receptor endocytosis pathway in vitro. The radiolabeled yield of [(99m)Tc] DTPA-PEG-folate was in excess of 98%, and specific activities of 7.4 kBq (0.2 microCi/microg) were achieved. After subcutaneous injection, [(99m)Tc] DTPA-PEG-folate exhibited an initial increase and successive decline of accumulation in popliteal nodes in normal Wistar rats. Expect for the kidney, uptake by other tissues was rather low. In a normal rabbit imagine study, the lymphatic vessels were readily visualized by single-photon-emission computed tomography following subcutaneous injection of [(99m)Tc] DTPA-PEG-folate. In conclusion, the [(99m)Tc] DTPA-PEG-folate conjugate may have a potential as a lymphatic tumor-targeted radiopharmaceutical.
    [Abstract] [Full Text] [Related] [New Search]