These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Repolarization abnormality for prediction of all-cause and cardiovascular mortality in American Indians: the Strong Heart Study.
    Author: Okin PM, Malik M, Hnatkova K, Lee ET, Galloway JM, Best LG, Howard BV, Devereux RB.
    Journal: J Cardiovasc Electrophysiol; 2005 Sep; 16(9):945-51. PubMed ID: 16174013.
    Abstract:
    BACKGROUND: Analysis of electrocardiographic (ECG) repolarization abnormality using QTc interval and principal component analysis (PCA) of the T-wave vector predict all-cause and cardiovascular (CV) mortality. Novel descriptors of T-wave morphology have been suggested as measures of repolarization heterogeneity and adverse prognosis. However, whether these T-wave descriptors provide prognostic information beyond QTc and the PCA ratio has not been examined. METHODS AND RESULTS: Predictive values of QTc, PCA, and novel ECG variables characterizing the T-wave loop were assessed in 1,729 American Indian participants in the first Strong Heart Study exam. T-loop morphology was quantified by the ratio of the second to first eigenvalues of the T-wave vector (PCA ratio), T-loop area (TLA) projected onto the dominant vector plane, T-wave morphology dispersion (TMD) and by the sum of the squares of the fourth to eighth eigenvalues, the T-wave residuum (TWR). After mean follow-up of 4.8 +/- 0.8 years, there were 183 deaths from all causes, including 51 CV deaths. In univariate Cox analyses, prolonged QTc, increased PCA ratio, TLA, TMD, and TWR were significant predictors of all-cause and CV mortality (P < 0.001). In multivariate Cox analyses adjusting for demographic and clinical risk factors for mortality, increased PCA ratio (chi-square = 7.9, P = 0.005) and TWR (chi-square = 5.3, P = 0.022) remained significant predictors of CV mortality and increased QTc (chi-square = 12.1, P < 0.001) and TWR (chi-square = 6.0, P = 0.014) of all-cause mortality. Addition of TWR to the model with clinical variables and the PCA ratio for CV mortality and to the model with clinical variables and prolonged QTc for all-cause mortality increased prognostic value of each model (increase in overall chi-square from 287.5 to 301.9 and from 221.5 to 230.3, respectively). CONCLUSION: Novel descriptors of T-wave complexity provide additional prognostic information beyond QTc and PCA ratio for prediction of all-cause and CV mortality.
    [Abstract] [Full Text] [Related] [New Search]