These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Construction of a three-dimensional outline of the heart and conduction pathway by means of a 64-channel magnetocardiogram in patients with atrial flutter and fibrillation.
    Author: Nakai K, Kawazoe K, Izumoto H, Tsuboi J, Oshima Y, Oka T, Yoshioka K, Shozushima M, Suwabe A, Itoh M, Kobayashi K, Shimizu T, Yoshizawa M.
    Journal: Int J Cardiovasc Imaging; 2005 Oct; 21(5):555-61; discussion 563-4. PubMed ID: 16175446.
    Abstract:
    BACKGROUND: Magnetocardiography (MCG) has the potential for collecting three-dimensional (3D) intracardiac electric information, because the magnetic field is unaffected by the shape of the lungs and torso. In the present study, we report on the generation of a 3D heart outline and conduction pathway by means of a current density map using a 64-channel SQUID system, and an evaluation of its significance in patients with atrial flutter (AFL) and atrial fibrillation (AFIB). METHODS: The subjects consisted of 20 healthy volunteers, and 3 patients with AFL and 4 patients with AFIB. A 64-channel MCG was recorded after digitization at 500 Hz, and a 3D current density was reconstructed from the magnetic fields using a space filter in conjunction with the minimum normalization method of Tikhonov. A 3D heart outline was generated from the integrated current density by the space filter. The conduction pathway was superimposed on a heart outline generated by a magnetic field. The heart outline was verified by the silhouette on the magnetic resonance (MR) images. An MCG was recorded pre- and post interventional therapy, and therapeutic efficacy was evaluated. RESULTS: The 3D heart outline of the atrium and ventricle corresponded to the silhouette of the right atrium and left ventricle, respectively, on an MR image. The serial conduction pathway of the QRS segment superimposed on the 3D heart outline map demonstrated the conduction pattern generated within the heart. The MCG revealed a counter-clockwise rotation in patients with AFL, and random micro-reentry in the case of AFIB. After interventional therapy, restoration of the sinus rhythm was verified in patients with both AFL and AFIB. CONCLUSIONS: A 64-channel MCG was used to evaluate the 3D heart outline and conduction pathway in patients with AFL and AFIB without the need for MR images. Condensed Abstract A 64-channel MCG was used to evaluate the 3D heart out line and conduction pathway in patients with AFL and AFIB.
    [Abstract] [Full Text] [Related] [New Search]