These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An increase in [Ca2+]i is sufficient but not necessary for driving mitosis in early mouse embryos.
    Author: FitzHarris G, Larman M, Richards C, Carroll J.
    Journal: J Cell Sci; 2005 Oct 01; 118(Pt 19):4563-75. PubMed ID: 16179613.
    Abstract:
    An increase in intracellular Ca2+ concentration ([Ca2+]i) has been shown to drive sea-urchin embryos and some fibroblasts through nuclear-envelope breakdown (NEBD) and the metaphase-to-anaphase transition. Mitotic Ca2+ transients can be pan-cellular global events or localized to the perinuclear region. It is not known whether Ca2+ is a universal regulator of mitosis or whether its role is confined to specific cell types. To test the hypothesis that Ca2+ is a universal regulator of mitosis, we have investigated the role of Ca2+ in mitosis in one-cell mouse embryos. Fertilized embryos generate Ca2+ transients during the first mitotic division. Imposing a Ca2+ transient by photorelease of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] resulted in acceleration of mitosis entry, suggesting that a [Ca2+]i increase is capable of triggering mitosis. Mitotic Ca2+ transients were inhibited using three independent approaches: injection of intracellular Ca2+ buffers; downregulation of Ins(1,4,5)P3 receptors; and removal of extracellular Ca2+. None of the interventions had any effects on the timing of NEBD or cytokinesis. The possibility that NEBD is driven by localized perinuclear Ca2+ transients was examined using two-photon microscopy but no Ca2+-dependent increases in fluorescence were found to precede NEBD. Finally, the second mitotic division took place in the absence of any detectable [Ca2+]i increase. Thus, although an induced [Ca2+]i increase can accelerate mitosis entry, neither cytosolic nor perinuclear [Ca2+] increases appear to be necessary for progression through mitosis in mouse embryos.
    [Abstract] [Full Text] [Related] [New Search]