These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased superoxide anion production by interleukin-1beta impairs nitric oxide-mediated relaxation in resistance arteries.
    Author: Jiménez-Altayó F, Briones AM, Giraldo J, Planas AM, Salaices M, Vila E.
    Journal: J Pharmacol Exp Ther; 2006 Jan; 316(1):42-52. PubMed ID: 16183707.
    Abstract:
    The present study was designed to analyze the effect of long-term incubation with interleukin-1beta (IL-1beta) on endothelium-dependent relaxation in rat mesenteric resistance arteries. Vessels were incubated in culture medium with or without IL-1beta (10 ng/ml, 14 h). Changes in lumen diameter were recorded in a pressure myograph. Protein expression, nitrite, and superoxide anion (O(2)(.)) production were evaluated by either Western blot or immunofluorescence, Griess reaction, and ethidium fluorescence, respectively. IL-1beta impaired acetylcholine (ACh) and sodium nitroprusside (SNP) vasodilation and increased nitrite and O(2)(.) production and inducible nitric-oxide synthase (iNOS), xanthine oxidase, and p22(phox) expression. However, neither endothelial nitric-oxide synthase (NOS) nor soluble guanylate cyclase protein expression were affected by IL-1beta treatment. Polyethylene glycol superoxide dismutase partially reversed the impairment of ACh relaxation and abolished the O(2)(.) production observed in IL-1beta-treated arteries. The impairment of ACh relaxation induced by IL-1beta was also partially reversed by the xanthine oxidase inhibitor allopurinol (1 mM) but not by either the NADPH oxidase inhibitor apocynin (0.3 mM) or the inducible NOS inhibitor N-3-aminomethylbenzylacetamidine (1 microM). However, all these inhibitors improved the impaired SNP response. The results of the present study demonstrate that long-term incubation with IL-1beta induces an impairment of the nitric oxide-mediated relaxation in mesenteric resistance arteries through the production of O(2)(.), mainly from xanthine oxidase.
    [Abstract] [Full Text] [Related] [New Search]