These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective metabolism of E-3,4-bis(4-ethylphenyl)hex-3-ene in rat liver microsomes.
    Author: Fabian EJ, Metzler M.
    Journal: Arch Toxicol; 2006 Jan; 80(1):17-26. PubMed ID: 16187102.
    Abstract:
    The synthetic stilbene derivative E-3,4-bis(4-ethylphenyl)hex-3-ene (E-DE-BPH) has been proposed as a potential anticancer drug with a new mode of action. We report here on the in vitro metabolism of E-DE-BPH in liver microsomes of rats and pigs. The formation of five metabolites, which could be separated on a reverse-phase HPLC column with UV detection, was observed in microsomal incubations. To facilitate the structural identification of these metabolites, two different deuterium-labeled forms of E-DE-BPH were synthesized. By comparing the mass spectra obtained for the metabolites of unlabeled E-DE-BPH and of the two deuterated forms, it could be demonstrated that E-DE-BPH was oxidized by liver microsomes exclusively at the benzylic positions of the molecule. The major metabolite was identified as E-3-(4-(1-hydroxyethyl)phenyl)-4-(4-ethylphenyl)hex-3-ene. Four minor metabolites were formed from the major metabolite, either by hydroxylation at the other benzylic position to yield a bishydroxylated metabolite, or by oxidation of the hydroxyl group to form E-3-(4-acetylphenyl)-4-(4-ethylphenyl)hex-3-ene. The latter compound was also obtained by chemical oxidation of the monohydroxylated metabolite of E-DE-BPH. Since no products containing hydroxyl groups at the aromatic rings or at other aliphatic sites of the molecule were detected, a surprisingly selective oxidative metabolism of E-DE-BPH appears to occur with rat and pig liver microsomes.
    [Abstract] [Full Text] [Related] [New Search]