These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fast method for brain image segmentation: application to proton magnetic resonance spectroscopic imaging. Author: Bonekamp D, Horská A, Jacobs MA, Arslanoglu A, Barker PB. Journal: Magn Reson Med; 2005 Nov; 54(5):1268-72. PubMed ID: 16187272. Abstract: The interpretation of brain metabolite concentrations measured by quantitative proton magnetic resonance spectroscopic imaging (MRSI) is assisted by knowledge of the percentage of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) within each MRSI voxel. Usually, this information is determined from T(1)-weighted magnetic resonance images (MRI) that have a much higher spatial resolution than the MRSI data. While this approach works well, it is time-consuming. In this article, a rapid data acquisition and analysis procedure for image segmentation is described, which is based on collection of several, thick slice, fast spin echo images (FSE) of different contrast. Tissue segmentation is performed with linear "Eigenimage" filtering and normalization. The method was compared to standard segmentation techniques using high-resolution 3D T(1)-weighted MRI in five subjects. Excellent correlation between the two techniques was obtained, with voxel-wise regression analysis giving GM: R2 = 0.893 +/- 0.098, WM: R2 = 0.892 +/- 0.089, ln(CSF): R2 = 0.831 +/- 0.082). Test-retest analysis in one individual yielded an excellent agreement of measurements with R2 higher than 0.926 in all three tissue classes. Application of FSE/EI segmentation to a sample proton MRSI dataset yielded results similar to prior publications. It is concluded that FSE imaging in conjunction with Eigenimage analysis is a rapid and reliable way of segmenting brain tissue for application to proton MRSI.[Abstract] [Full Text] [Related] [New Search]