These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Radiobiological effects of fast neutron/photon mixed irradiation on nasopharyngeal cancer cell line CNE-1].
    Author: Zhang YJ, Yang WZ, Liu XF, Tang JH, Chang WK, Yin WB.
    Journal: Zhonghua Zhong Liu Za Zhi; 2005 Jul; 27(7):408-11. PubMed ID: 16188125.
    Abstract:
    OBJECTIVE: To study the radiobiological effects of fast neutron/photon mixed irradiation on human cancer cell in vitro and to discuss the mechanism in relation with cell cycle and apoptosis, thus to provide experimental support for the further application of fast neutron radiotherapy of cancer. METHODS: Exponentially growing human nasopharyngeal cancer cell line CNE-1 was irradiated in vitro with 35 MeV p-->Be fast neutron and 6 MV-X ray in grading doses (0 cGy, 40 cGy, 80 cGy, 120 cGy, 160 cGy, 240 cGy, 320 cGy and 400 cGy for neutron, and 0 cGy, 100 cGy, 200 cGy, 300 cGy, 400 cGy, 600 cGy, 800 cGy and 1000 cGy for X ray). Clonogenic assay was performed, and relative biological effectiveness (RBE) of fast neutron was determined with D(10) by means of cell survival curves. Isoeffective doses of 35 MeV p-->Be fast neutron and 6 MV-X ray were obtained according to the RBE. The cells were assigned into two irradiation regimens, (1) the one-week-fractionation regimen, which adopted the radiation pattern of X x 5, N x 2 and X-N-X-X-N. After irradiation the clonogenic assay was performed to compare their survival fractions; (2) the two-dose regimen, with the radiation pattern of X + N, N + X and X + X. Flow cytometry was done at different time points after irradiation to analyze cell cycle distribution and apoptosis. Fast neutron dose was delivered on Tuesday and Friday, and all the other irradiation intervals were 24 h. RESULTS: The RBE of fast neutron to X ray in CNE-1 cells according to the D(10) ratio was 2.40. The neutron isoeffective dose for a single dose of 200 cGy of 6 MV-X ray was approximately 80 cGy. In clonogenic assay, the cell survival fractions were significantly lower in X-N-X-X-N group (0.0079) than those in X x 5 (0.018) and N x 2 (0.017) groups. The flow cytometry suggested a higher percentage of apoptotic cells after mixed irradiation, and different sequence of X ray and neutron irradiations caused varying changes in cell cycle arrest. CONCLUSION: Mixed irradiation of fast neutron and X ray showed a synergic effect in vitro on CNE-1 cell killing. Cell cycle arrest and apoptosis may play some role in the radiation damage repair mechanisms of mixed beam irradiation.
    [Abstract] [Full Text] [Related] [New Search]