These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of diisopropanolamine (dipaH3) in cluster dimerisation and polymerisation: from spin frustrated S= 5 FeIII 6 clusters to the novel 1-D covalent polymer of mixed valence [CoII3CoIII] tetramers.
    Author: Jones LF, Jensen P, Moubaraki B, Cashion JD, Berry KJ, Murray KS.
    Journal: Dalton Trans; 2005 Oct 21; (20):3344-52. PubMed ID: 16193153.
    Abstract:
    The synthesis, crystal structures and magnetic properties of two hexanuclear Fe(6) clusters of general formula [Fe(6)(O)(2)(OH)(2)(O(2)CR)(10)(dipaH(2))(2)].xMeCN.yH(2)O (R = Ph, x= 5.5, y= 1 (1), R = C(Me)(3), x= 2, y= 3 (2)) are reported. The presence of the flexible amino-alcohol ligand diisopropanolamine (dipaH(3)) induces the dimerisation of two trinuclear Fe(III) complexes, [Fe(3)O(O(2)CPh)(6)(H(2)O)(3)](NO(3)) and [Fe(3)O(O(2)CC(Me)(3))(6)(H(2)O)(3)](O(2)CC(Me)(3)), to form the hexanuclear clusters 1 and 2. DC magnetic susceptibility measurements on 1 and 2 assign ground spin states of S= 5, with zero-field splitting parameters (D) of ca. 0.25 cm(-1) obtained from magnetisation isotherms. AC susceptibilities showed no maxima as a function of frequency, at low temperatures, and this confirmed the lack of single-molecule magnetic behaviour. Clusters 1 and 2 are isostructural, consisting of two fused {Fe(3)O} trinuclear units, bridged in two positions by one mu(2)-OH(-) unit and two mu(2)-O(2)CR(-) bridging carboxylates (R = Ph (), C(Me)(3)()). The two singly deprotonated dipaH(2)(-) bridging ligands span the Fe1-Fe2 edges in and via one micro(2)-bridging alcohol arm and one terminal nitrogen atom while the second alcohol arm remains free. The ground spin state of S= 5 in 1 and 2 can be attributed to the presence of spin frustration within the system. 1 and 2 join a small family of spin frustrated S= 5 Fe(6) systems the magnetism of which give weight to a recent report that it is the trans position of the two shortest Fe(2) pair frustrated exchange pathways in these Fe(6) clusters that gives rise to a ground spin state of S= 5 (trans) and not a ground spin state of S= 0 (cis). The Mössbauer spectra of 1 and 2 show two quadrupole doublets, as expected, at 295 K, but a broad asymmetric lineshape at 77 K. The synthesis and magnetic properties of {[Co(II)(3)Co(III)(OH)(O(2)CC(Me)(3))(4)(HO(2)CC(Me)(3))(2)(dipaH)(2)].2MeCN}(n)(3) are reported. 3 is a covalently bonded 1D polymer of tetrameric cobalt clusters. The presence of the dipaH(3) ligand here not only dimerises the [Co(II)(2)(micro-H(2)O)(O(2)CC(Me)(3))(4)(HO(2)CC(Me)(3))(4)] starting complex into the tetranuclear species but also polymerises the [Co(II)(3)Co(III)] clusters in 3 by acting as the propagating ligand in the 1D chain. Magnetic susceptibility measurements on show each [Co(4)] moiety exhibits weak antiferromagnetic coupling between the three Co(II)S= 3/2 metal centres and fitted J values are given. The ambiguity in assignment of the spin ground state of S= 1/2 or 3/2 is discussed.
    [Abstract] [Full Text] [Related] [New Search]