These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes. Author: Wilson JX, Dragan M. Journal: Free Radic Biol Med; 2005 Oct 15; 39(8):990-8. PubMed ID: 16198226. Abstract: Sepsis causes brain dysfunction. Because neurotransmission requires high ascorbate and low dehydroascorbic acid (DHAA) concentrations in brain extracellular fluid, the effect of septic insult on ascorbate recycling (i.e., uptake and reduction of DHAA) and export was investigated in primary rat and mouse astrocytes. DHAA raised intracellular ascorbate to physiological levels but extracellular ascorbate only slightly. Septic insult by lipopolysaccharide and interferon-gamma increased ascorbate recycling in astrocytes permeabilized with saponin but decreased it in those with intact plasma membrane. The decrease was due to inhibition of the glucose transporter (GLUT1) that translocates DHAA because septic insult slowed uptake of the nonmetabolizable GLUT1 substrate 3-O-methylglucose. Septic insult also abolished stimulation by glutamate of ascorbate export. Specific nitric oxide synthase (NOS) inhibitors and nNOS and iNOS deficiency failed to alter the effects of septic insult. Inhibitors of NADPH oxidase generally did not protect against septic insult, because only one of those tested (diphenylene iodonium) increased GLUT1 activity and ascorbate recycling. We conclude that astrocytes take up DHAA and use it to synthesize ascorbate that is exported in response to glutamate. This mechanism may provide the antioxidant on demand to neurons under normal conditions, but it is attenuated after septic insult.[Abstract] [Full Text] [Related] [New Search]