These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conditioned and unconditioned fear organized in the periaqueductal gray are differentially sensitive to injections of muscimol into amygdaloid nuclei.
    Author: Martinez RC, de Oliveira AR, Brandão ML.
    Journal: Neurobiol Learn Mem; 2006 Jan; 85(1):58-65. PubMed ID: 16198609.
    Abstract:
    The lateral and basolateral nuclei of the amygdala (LaA and BLA, respectively) serve as a filter for unconditioned and conditioned aversive information that ascends to higher structures from the brainstem, whereas the central nucleus of the amygdala (CeA) is considered to be the main output for the defense reaction. It has been shown that the dorsal periaqueductal gray (dPAG) is activated by threatening stimuli and has important functional links with the amygdala through two-way anatomical connections. In this work, we examined the influence of chemical inactivation of these nuclei of amygdala on the freezing and escape responses induced by electrical stimulation through electrodes implanted in the dPAG of Wistar rats. Each rat also bore a cannula implanted in the LaA, BLA or CeA for injections of muscimol (0.5 microg/0.5 microL) or its vehicle. The duration of freezing behavior that outlasts electrical stimulation of the dPAG was also measured. On the following day, these animals were submitted to a contextual fear-conditioning using foot shocks as unconditioned stimulus. Conditioned freezing to contextual cues previously associated with foot shocks was also inhibited by injections of muscimol into these amygdaloid nuclei. The contextual conditioned freezing behavior is generated in the neural circuits of conditioned fear in the amygdala. The data obtained also show that injections of muscimol into the three amygdaloid nuclei did not change the aversive threshold of freezing, but disrupted the dPAG post-stimulation freezing. Previous findings that the latter freezing results directly from dPAG stimulation and that it is not sensitive to a context shift suggest that it is unconditioned in nature. Thus, the amygdala can affect some, but not all, aspects of unconditioned freezing. Post-stimulation freezing may reflect the process of transferring aversive information from dPAG to higher brain structures.
    [Abstract] [Full Text] [Related] [New Search]