These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Author: Yang X, Beckmann D, Fiorenza S, Niedermeier C. Journal: Environ Sci Technol; 2005 Sep 15; 39(18):7279-86. PubMed ID: 16201659. Abstract: Recent laboratory-scale studies strongly suggested an advantage to operating air-sparging systems in a pulsed mode; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale pulsed air-sparging system during a short-term pilot test and during long-term system operation. The air-sparging system consisted of 32 sparging points and had been previously operated in a continuous mode for two years before the field study was performed. The field study used instruments with continuous data logging capabilities to monitor the dynamic responses of groundwater and soil vapor parameters to air injection. The optimum pulsing frequency was based on the evidence that the hydrocarbon volatilization and oxygen dissolution rates dramatically dropped after the air-sparging system reached steady state. The short-term pilot test results indicated a substantial increase in hydrocarbon volatilization and biodegradation in pulsed operation. On the basis of the results of the pilottest, the air-sparging system was set to operate in a pulsed mode at an optimum pulsing frequency. Operation parameters were collected 2, 8, and 12 months after the start of the pulsed operation. The long-term monitoring results showed thatthe pulsed operation increased the average hydrocarbon removal rate (kg/day) by a factor of up to 3 as compared to the previous continuous operation. The pulsed air sparging has resulted in higher reduction rates of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) than were observed during the continuous operation. Among BTEX, benzene's reduction rate was the highest during the pulsed air-sparging operation.[Abstract] [Full Text] [Related] [New Search]