These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalase plays a critical role in the CSF-independent survival of human macrophages via regulation of the expression of BCL-2 family.
    Author: Komuro I, Yasuda T, Iwamoto A, Akagawa KS.
    Journal: J Biol Chem; 2005 Dec 16; 280(50):41137-45. PubMed ID: 16204228.
    Abstract:
    M-colony-stimulating factor (M-CSF)-induced monocyte-derived macrophages (M-Mphi) required continuous presence of M-CSF for their survival, and depletion of M-CSF from the culture induced apoptosis, whereas human alveolar macrophages (A-Mphi) and granulocyte-macrophage (GM)-CSF-induced monocyte-derived macrophages (GM-Mphi) survived even in the absence of CSF. The expression of BCL-2 was higher in M-Mphi, and M-CSF withdrawal down-regulated the expression. The expression of BCL-X(L) was higher in A-Mphi and GM-Mphi, and the expression was CSF-independent. The expression of MCL-1 and BAX were not different between M-Mphi and GM-Mphi and were CSF-independent. Down-regulation of the expression of BCL-2 and BCL-X(L) by RNA interference showed the important role of BCL-2 and BCL-X(L) in the survival of M-Mphi and GM-Mphi, respectively. Human erythrocyte catalase (HEC) and conditioned medium obtained from GM-Mphi or A-Mphi cultured in the absence of GM-CSF prevented the M-Mphi from apoptosis and restored the expression of BCL-2. The activity of the conditioned medium was abrogated by pretreatment with anti-HEC antibody. Anti-HEC antibody also induced the apoptosis of M-Mphi cultured in the presence of M-CSF and GM-Mphi and A-Mphi cultured in the presence or absence of GM-CSF and down-regulated the expression of BCL-2 and BCL-X(L) in these Mphis. GM-Mphi and A-Mphi, but not M-Mphi, can produce both extracellular catalase and cell-associated catalase in a CSF-independent manner. Intracellular glutathione levels were kept equivalent in these Mphis, both in the presence or absence of CSF. These results indicate a critical role of extracellular catalase in the survival of human macrophages via regulation of the expression of BCL-2 family genes.
    [Abstract] [Full Text] [Related] [New Search]