These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bioavailability and pharmacokinetic studies of eurycomanone from Eurycoma longifolia.
    Author: Low BS, Ng BH, Choy WP, Yuen KH, Chan KL.
    Journal: Planta Med; 2005 Sep; 71(9):803-7. PubMed ID: 16206032.
    Abstract:
    A validated HPLC analysis of eurycomanone (1), a bioactive quassinoid, in rat plasma following oral and intravenous administration of Eurycoma longifolia Jack extract was developed for pharmacokinetic and bioavailability studies. Relatively high plasma eurycomanone concentrations were detected after an intravenous injection of 10 mg/kg extract F2 containing 1.96 mg/kg of the quassinoid. However, it declined rapidly to zero after 8 h. Its mean elimination rate constant (k(e)), biological half-life (t(1/2)), volume of distribution (V(d)) and clearance (CL) were 0.88 +/- 0.19 h (-1), 1.00 +/- 0.26 h, 0.68 +/- 0.30 L/kg and 0.39 +/- 0.08 L/h/kg, respectively. Following oral administration of eurycomanone, its Cmax and Tmax values were detected as 0.33 +/- 0.03 microg/mL and 4.40 +/- 0.98 h, respectively. The plasma concentration of the quassinoid after oral administration was much lower than after intravenous application in spite of the oral dose being 5 times higher. The results indicate that eurycomanone is poorly bioavailable when given orally. A comparison of the AUC (0-->infinity) obtained orally to that obtained after an intravenous administration (normalized for dose differences) revealed that the absolute bioavailability of the compound was low with 10.5 %. Furthermore, the compound appeared to be well distributed in the extravascular fluids because of its relatively high V(d) value. The poor oral bioavailability was not attributed to instability problems because eurycomanone has been shown to be stable under different pH conditions. Thus, its poor oral bioavailability may be due to poor membrane permeability in view of its low P value and/or high first-pass metabolism.
    [Abstract] [Full Text] [Related] [New Search]