These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sequential activation of p38 and ERK pathways by cGMP-dependent protein kinase leading to activation of the platelet integrin alphaIIb beta3. Author: Li Z, Zhang G, Feil R, Han J, Du X. Journal: Blood; 2006 Feb 01; 107(3):965-72. PubMed ID: 16210341. Abstract: Integrin activation (inside-out signaling) in platelets can be initiated by agonists such as von Willebrand factor (VWF) and thrombin. Here we show that a mitogen-activated protein kinase (MAPK), p38, plays an important role in the activation of integrin alphaIIb beta3 induced by VWF and thrombin. A dominant-negative mutant of p38, p38AF, inhibits alphaIIb beta3 activation induced by VWF binding to its receptor, the platelet glycoprotein Ib-IX (GPIb-IX), and p38 inhibitors diminish platelet aggregation induced by VWF or low-dose thrombin. The inhibitory effect of p38 inhibitor is unlikely to be caused by the previous suggested effect on cyclo-oxygenase, as inhibition also was observed in the presence of high concentrations of cyclo-oxygenase inhibitor, aspirin. VWF or thrombin induces p38 activation, which is inhibited in cGMP-dependent protein kinase (PKG)-knockout mouse platelets and PKG inhibitor-treated human platelets, indicating that activation of p38 is downstream from PKG in the signaling pathway. p38AF or p38 inhibitors diminish PKG-induced phosphorylation of extracellular stimuli-responsive kinase (ERK), which also is important in integrin activation. Thus, p38 plays an important role in mediating PKG-dependent activation of ERK. These data delineate a novel signaling pathway in which platelet agonists sequentially activate PKG, p38, and ERK pathways leading to integrin activation.[Abstract] [Full Text] [Related] [New Search]