These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphate triester hydrolysis promoted by an N2S(thiolate)Zn complex: mechanistic implications for the metal-dependent reactivity of peptide deformylase.
    Author: Goldberg DP, diTargiani RC, Namuswe F, Minnihan EC, Chang S, Zakharov LN, Rheingold AL.
    Journal: Inorg Chem; 2005 Oct 17; 44(21):7559-69. PubMed ID: 16212382.
    Abstract:
    The zinc(II) complex (PATH)ZnOH, where PATH is an N2S(thiolate) ligand, has been investigated for its ability to promote the hydrolysis of the phosphate triester tris(4-nitrophenyl) phosphate (TNP). The hydrolysis of TNP was examined as a function of PATH-zinc(II) complex concentration, substrate concentration, and pH in a water/ethanol mixture (66:33 v/v) at 25 degrees C. The reaction is first order in both zinc(II) complex and substrate, and the second-order rate constants were derived from linear plots of the observed pseudo-first-order rate constants versus zinc complex concentration at different pH values. A pH-rate profile yielded a kinetic pK(a) of 8.52(5) for the zinc-bound water molecule and a pH-independent rate constant of 16.1(7) M(-1) s(-1). Temperature-dependent studies showed linear Eyring behavior, yielding the activation parameters DeltaH++ = 36.9(1) kJ mol(-1) and DeltaS++ = -106.7(4) J mol(-1) K(-1). Interpretation of the kinetic data leads to the conclusion that hydrolysis of TNP takes place through a hybrid mechanism, in which the metal center plays a dual role of providing a nucleophilic hydroxide and activating the substrate through a Lewis acid effect. The synthesis and structural characterization of the related nickel(II) and iron(II) complexes [(PATH)2Ni2]Br2 (2) and (PATH)2Fe2Cl2 (3) are also described. Taken together, these data suggest a possible explanation for the low reactivity of the zinc(II) form of peptide deformylase as compared to the iron(II) form.
    [Abstract] [Full Text] [Related] [New Search]