These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characteristics of vitamin C immobilized particles and sodium alginate beads containing immobilized particles.
    Author: Desai KG, Liu C, Park HJ.
    Journal: J Microencapsul; 2005 Jun; 22(4):363-76. PubMed ID: 16214785.
    Abstract:
    This paper reports the properties of vitamin C encapsulated sodium alginate beads prepared by an alternative approach. The alternative encapsulation process mainly involves immobilization of vitamin C in hydrated zinc oxide layers and encapsulation of prepared immobilized particles in sodium alginate bead. The immobilization of vitamin C in hydrated zinc oxide layers was achieved by a coprecipitation process. Fourier transform infrared (FTIR) spectroscopy showed that the vitamin C was found to be stable after its immobilization. X-ray diffraction (XRD) studies revealed that anionic vitamin C molecules are adsorbed between positively charged zinc hydroxide layers with a 1:1 layer sequence, since well-defined change in basal spacing was observed. Well-defined change in surface morphology was observed by scanning electron microscopy (SEM) when vitamin C immobilized particles are encapsulated in sodium alginate bead. The biological activity of vitamin C was retained, even after its immobilization which was confirmed by 4-dihydroxy-L-phenylalanine (L-DOPA) oxidase inhibition and free radical scavenging activity studies. The release rate of vitamin C from immobilized particles and beads was sustained through an ion exchange process. A higher amount of stable vitamin C was recovered from the bead when compared to neat vitamin C itself.
    [Abstract] [Full Text] [Related] [New Search]