These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.
    Author: Li PT, Collin D, Smith SB, Bustamante C, Tinoco I.
    Journal: Biophys J; 2006 Jan 01; 90(1):250-60. PubMed ID: 16214869.
    Abstract:
    Mechanical unfolding and refolding of single RNA molecules have previously been observed in optical traps as sudden changes in molecular extension. Two methods have been traditionally used: "force-ramp", with the applied force continuously changing, and "hopping". In hopping experiments the force is held constant and the molecule jumps spontaneously between two different states. Unfolding/refolding rates are measured directly, but only over a very narrow range of forces. We have now developed a force-jump method to measure the unfolding and refolding rates independently over a wider range of forces. In this method, the applied force is rapidly stepped to a new value and either the unfolding or refolding event is monitored through changes in the molecular extension. The force-jump technique is compared to the force-ramp and hopping methods by using a 52-nucleotide RNA hairpin with a three-nucleotide bulge, i.e., the transactivation response region RNA from the human immunodeficiency virus. We find the unfolding kinetics and Gibbs free energies obtained from all three methods to be in good agreement. The transactivation response region RNA hairpin unfolds in an all-or-none two-state reaction at any loading rate with the force-ramp method. The unfolding reaction is reversible at small loading rates, but shows hysteresis at higher loading rates. Although the RNA unfolds and refolds without detectable intermediates in constant-force conditions (hopping and force-jump), it shows partially folded intermediates in force-ramp experiments at higher unloading rates. Thus, we find that folding of RNA hairpins can be more complex than a simple single-step reaction, and that application of several methods can improve understanding of reaction mechanisms.
    [Abstract] [Full Text] [Related] [New Search]