These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Author: Mantis I, Voutsa D, Samara C. Journal: Ecotoxicol Environ Saf; 2005 Nov; 62(3):397-407. PubMed ID: 16216634. Abstract: Chemical analyses and toxicity testing were employed in conjunction to evaluate the environmental hazard from the wasted sludge generated during the biological treatment of urban and industrial wastewaters. Chemical analyses included determination of seven polychlorinated biphenyls (PCBs), 13 polycyclic aromatic hydrocarbons (PAHs), total organic carbon (TOC), and seven heavy metals (As, Cd, Cr, Cu, Pb, Mn, and Zn) in sludge and sludge leachates deriving from two standard leaching procedures: (a) the mild leaching test EN-12457-2 proposed by EC and (b) the relatively aggressive toxicity characteristic leaching procedure (TCLP) leaching test proposed by US EPA. Acute toxicity measurements were performed in aqueous sludge elutriates and leachates by using bioluminescence bacteria. The urban sludge was found to be more enriched with PAHs than the industrial sludge, however, at levels below the EU limits for sludge application. The total PCB content (Sigma7PCBs) in both sludges, particularly in the industrial sludge, exceeded the proposed European limit for sludge use as soil amendment. With regards to their heavy metal content, both sludges met the requirements for use in agriculture. The urban sludge exhibited high ecotoxicity, while the industrial sludge with almost two times lower toxicity was classified as not toxic to slightly toxic. The EN and the TCLP leaching procedures resulted in different sludge characterizations both from chemical and from ecotoxicological points of view. The EN procedure appeared to be more sensitive to the potential environmental risk from sludge disposal. The results of the study revealed the necessity for combining chemical with ecotoxicological criteria for integrated characterization of wasted sludge and the need for harmonization of the methods employed for waste classification.[Abstract] [Full Text] [Related] [New Search]