These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolism and ventilation in acute hypoxia: a comparative analysis in small mammalian species.
    Author: Frappell P, Lanthier C, Baudinette RV, Mortola JP.
    Journal: Am J Physiol; 1992 Jun; 262(6 Pt 2):R1040-6. PubMed ID: 1621857.
    Abstract:
    O2 consumption (VO2), CO2 production (VCO2), and minute ventilation (VE) have been measured during normoxia and hypoxia (10-20 min in 10% O2) in specimens of 27 species from 6 mammalian orders, ranging in body mass (M) from a few grams to several kilograms. In normoxia, both metabolism and VE scaled close to M3/4, VE/VO2 and VE/VCO2 therefore being independent of M. In hypoxia, VE/metabolism increased in all species (on average greater than 100%), mostly because of a drop in VO2. On average, VE was 23% above the normoxic value but in some species decreased below normoxia. VO2 dropped in all but one species, on average 35%. Body temperature decreased by variable amounts, usually more in the smallest species. The decrease in metabolism during hypoxia was positively correlated with the resting metabolic rate of the species in a manner very similar to what can be calculated from data of previously studied newborn mammals. Hence hypoxia may decrease metabolic rate by decreasing thermogenesis, with larger effects in smaller animals, whether newborns or adults, because of their higher thermogenic requirements. We conclude that 1) hypoxic hypometabolism is a general characteristic of the mammalian response to hypoxia and cannot be neglected in the interpretation of ventilatory and cardiovascular responses and 2) its magnitude is inversely related to the resting VO2 of the species and therefore could be less prominent or possibly absent in adults of larger species.
    [Abstract] [Full Text] [Related] [New Search]