These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes.
    Author: Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF.
    Journal: J Am Chem Soc; 2005 Oct 19; 127(41):14263-78. PubMed ID: 16218621.
    Abstract:
    This paper describes mechanistic studies on the functionalization of arenes with the diboron reagent B(2)pin(2) (bis-pinacolato diborane(4)) catalyzed by the combination of 4,4'-di-tert-butylbipyridine (dtbpy) and olefin-ligated iridium halide or olefin-ligated iridium alkoxide complexes. This work identifies the catalyst resting state as [Ir(dtbpy)(COE)(Bpin)(3)] (COE = cyclooctene, Bpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl). [Ir(dtbpy)(COE)(Bpin)(3)] was prepared by independent synthesis in high yield from [Ir(COD)(OMe)](2), dtbpy, COE, and HBpin. This complex is formed in low yield from [Ir(COD)(OMe)](2), dtbpy, COE, and B(2)pin(2). Kinetic studies show that this complex reacts with arenes after reversible dissociation of COE. An alternative mechanism in which the arene reacts with the Ir(I) complex [Ir(dtbpy)Bpin] after dissociation of COE and reductive elimination of B(2)pin(2) does not occur to a measurable extent. The reaction of [Ir(dtbpy)(COE)(Bpin)(3)] with arenes and the catalytic reaction of B(2)pin(2) with arenes catalyzed by [Ir(COD)(OMe)](2) and dtbpy occur faster with electron-poor arenes than with electron-rich arenes. However, both the stoichiometric and catalytic reactions also occur faster with the electron-rich heteroarenes thiophene and furan than with arenes, perhaps because eta(2)-heteroarene complexes are more stable than the eta(2)-arene complexes and the eta(2)-heteroarene or arene complexes are intermediates that precede oxidative addition. Kinetic studies on the catalytic reaction show that [Ir(dtbpy)(COE)(Bpin)(3)] enters the catalytic cycle by dissociation of COE, and a comparison of the kinetic isotope effects of the catalytic and stoichiometric reactions shows that the reactive intermediate [Ir(dtbpy)(Bpin)(3)] cleaves the arene C-H bond. The barriers for ligand exchange and C-H activation allow an experimental assessment of several conclusions drawn from computational work. Most generally, our results corroborate the conclusion that C-H bond cleavage is turnover-limiting, but the experimental barrier for this bond cleavage is much lower than the calculated barrier.
    [Abstract] [Full Text] [Related] [New Search]