These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genotype-phenotype correlation between the polymorphic UGT2B17 gene deletion and NNAL glucuronidation activities in human liver microsomes. Author: Lazarus P, Zheng Y, Runkle EA, Muscat JE, Wiener D. Journal: Pharmacogenet Genomics; 2005 Nov; 15(11):769-78. PubMed ID: 16220109. Abstract: The nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is one of the most potent and abundant procarcinogens found in tobacco and tobacco smoke, and glucuronidation of its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), is an important mechanism for NNK detoxification. In cigarette smokers and tobacco chewers, there is a wide variation in the urinary levels of the ratio of NNAL to NNAL glucuronide (NNAL-Gluc). To determine whether genetic variation plays a potential role in this inter-individual variability, NNAL-glucuronidating activities were analysed in a series of human liver microsomal specimens and compared with UGT2B17 deletion genotypes in the same subjects. Assays performed in vitro demonstrated that over-expressed UGT2B17 exhibits high O-glucuronidating activity against NNAL. When stratifying subjects by UGT2B17 genotype, a significant or near-significant decrease in NNAL-O-Gluc formation was observed in liver microsomes from individuals who were either heterozygous [(+/0), P=0.07] or homozygous [(0/0), P=0.016] for the UGT2B17 deletion compared to liver microsomes from individuals with intact UGT2B17 alleles [(+/+)]. There was a significant (P<0.01) association between the level of liver microsomal NNAL-O-glucuronide formation and increasing numbers of the UGT2B17 null alleles in the liver microsomal specimens examined in this study, and a significant decrease in NNAL-O-Gluc formation was observed when comparing liver microsomes from individuals who had at least one UGT2B17 allele deleted [(+/0)+(0/0)] versus microsomes from UGT2B17 (+/+) subjects (P=0.004). When stratifying by the median value of NNAL-O-Gluc formation activity, a significantly (P=0.015) higher number of subjects with liver microsomes having low NNAL-O-Gluc formation activity contained the UGT2B17 null genotype compared to subjects with liver microsomes exhibiting high NNAL-O-Gluc formation activity. When stratifying by UGT2B7/UGT2B17 haplotypes, the association between the level of liver microsomal NNAL-O-glucuronide formation and increasing numbers of the UGT2B17 null allele was at the level of statistical significance for subjects with the UGT2B7 (*1/*2) (P=0.05) or UGT2B7 (*2/*2) (P<0.02) genotypes. These data suggest that the UGT2B17 deletion polymorphism is associated with a reduced rate of NNAL detoxification in vivo and may increase individual susceptibility to tobacco-related cancers.[Abstract] [Full Text] [Related] [New Search]