These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect measures in non-parametric regression with interactions between continuous exposures. Author: Cadarso-Suárez C, Roca-Pardiñas J, Figueiras A. Journal: Stat Med; 2006 Feb 28; 25(4):603-21. PubMed ID: 16220482. Abstract: In many biomedical studies, interest is often attached to calculating effect measures in the presence of interactions between two continuous exposures. Traditional approaches based on parametric regression are limited by the degree of arbitrariness involved in transforming these exposures into categorical variables or imposing a parametric form on the regression function. In this paper, we present: (a) a flexible non-parametric method for estimating effect measures through generalized additive models including interactions; and (b) bootstrap techniques for (i) testing the significance of interaction terms, and (ii) constructing confidence intervals for effect measures. The validity of our methodology is supported by simulations, and illustrated using data from a study of possible risk factors for post-operative infection. This application revealed a hitherto unreported effect: for patients with high plasma glucose levels, increased risk is associated, not only with low, but also with high percentages of lymphocytes.[Abstract] [Full Text] [Related] [New Search]