These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics.
    Author: Combs AP, Yue EW, Bower M, Ala PJ, Wayland B, Douty B, Takvorian A, Polam P, Wasserman Z, Zhu W, Crawley ML, Pruitt J, Sparks R, Glass B, Modi D, McLaughlin E, Bostrom L, Li M, Galya L, Blom K, Hillman M, Gonneville L, Reid BG, Wei M, Becker-Pasha M, Klabe R, Huber R, Li Y, Hollis G, Burn TC, Wynn R, Liu P, Metcalf B.
    Journal: J Med Chem; 2005 Oct 20; 48(21):6544-8. PubMed ID: 16220970.
    Abstract:
    Structure-based design led to the discovery of novel (S)-isothiazolidinone ((S)-IZD) heterocyclic phosphotyrosine (pTyr) mimetics that when incorporated into dipeptides are exceptionally potent, competitive, and reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). The crystal structure of PTP1B in complex with our most potent inhibitor 12 revealed that the (S)-IZD heterocycle interacts extensively with the phosphate binding loop precisely as designed in silico. Our data provide strong evidence that the (S)-IZD is the most potent pTyr mimetic reported to date.
    [Abstract] [Full Text] [Related] [New Search]