These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The C-terminal tail of aquaporin-2 determines apical trafficking. Author: Kuwahara M, Asai T, Terada Y, Sasaki S. Journal: Kidney Int; 2005 Nov; 68(5):1999-2009. PubMed ID: 16221200. Abstract: BACKGROUND: Aquaporin-2 (AQP-2) proteins are mainly expressed at the apical region of the collecting duct cells. We previously reported three different mutations in the C-terminus of AQP-2 that all-cause autosomal-dominant nephrogenic diabetes insipidus. When one of these mutant AQP-2s was expressed in Madin-Darby canine kidney (MDCK) cells, it was mistargeted to the basolateral membrane, suggesting a critical role of the C-terminal tail in the apical trafficking of AQP-2. METHODS: Portions of the AQP-2 C-terminal tail (residues 226-271) were mutated by the polymerase chain reaction (PCR) technique and inserted into the pcDNA3.1 vector. Constructs were transfected into MDCK cells to examine the localization of mutated AQP-2 proteins by immunofluorescence microscopy. Cell surface expression was detected by biotinylation assay. RESULTS: The wild-type AQP-2 was localized at the apical membrane, whereas mutants lacking residues 262-271 (the last 10 amino acids) were predominantly distributed in the endoplasmic reticulum. Deletion mutants of the initial (226-240del) and middle (241-252del) portions of the C-terminal tail were identified at the apical membrane, suggesting that residues 226-252 have no involvement in apical targeting. An AQP-4-AQP-2 chimera in which a portion of the AQP-4 C-terminal tail was replaced by the corresponding site in AQP-2 (residues 256-271) was found at the apical membrane. The sequence of the last 4 amino acids of AQP-2 (G-T-K-A) corresponds to a PDZ-interacting motif. Our investigations identified a mutant of this portion mostly localized to the subapical region. Further, apical expression was found to be significantly decreased in mutants lacking a consensus sequence for cyclic adenosine monophosphate (cAMP)-dependent phosphorylation (residues 253-256). CONCLUSION: The sequence at 256-271 is sufficient for apical trafficking in AQP-2. The putative PDZ-interacting motif (G-T-K-A, residues 268-271) plays a key role in apical membrane expression. In addition, cAMP-dependent phosphorylation was found to be critical for apical targeting.[Abstract] [Full Text] [Related] [New Search]