These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation.
    Author: Zan H, Shima N, Xu Z, Al-Qahtani A, Evinger Iii AJ, Zhong Y, Schimenti JC, Casali P.
    Journal: EMBO J; 2005 Nov 02; 24(21):3757-69. PubMed ID: 16222339.
    Abstract:
    Immunoglobulin (Ig) somatic hypermutation (SHM) critically underlies the generation of high-affinity antibodies. Mutations can be introduced by error-prone polymerases such as polymerase zeta (Rev3), a mispair extender, and polymerase eta, a mispair inserter with a preference for dA/dT, while repairing DNA lesions initiated by AID-mediated deamination of dC to yield dU:dG mismatches. The partial impairment of SHM observed in the absence of these polymerases led us to hypothesize a main role for another translesion DNA polymerase. Here, we show that deletion in C57BL/6J mice of the translesion polymerase theta, which possesses a dual nucleotide mispair inserter-extender function, results in greater than 60% decrease of mutations in antigen-selected V186.2DJ(H) transcripts and greater than 80% decrease in mutations in the Ig H chain intronic J(H)4-iEmu sequence, together with significant alterations in the spectrum of the residual mutations. Thus, polymerase theta plays a dominant role in SHM, possibly by introducing mismatches while bypassing abasic sites generated by UDG-mediated deglycosylation of AID-effected dU, by extending DNA past such abasic sites and by synthesizing DNA during dU:dG mismatch repair.
    [Abstract] [Full Text] [Related] [New Search]