These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy. Author: Lee J, El-Abaddi N, Duke A, Cerussi AE, Brenner M, Tromberg BJ. Journal: J Appl Physiol (1985); 2006 Feb; 100(2):615-22. PubMed ID: 16223982. Abstract: We present noninvasive, quantitative in vivo measurements of methemoglobin formation and reduction in a rabbit model using broadband diffuse optical spectroscopy (DOS). Broadband DOS combines multifrequency frequency-domain photon migration (FDPM) with time-independent near infrared (NIR) spectroscopy to quantitatively measure bulk tissue absorption and scattering spectra between 600 nm and 1,000 nm. Tissue concentrations (denoted by brackets) of methemoglobin ([MetHb]), deoxyhemoglobin ([Hb-R]), and oxyhemoglobin ([HbO2]) were determined from absorption spectra acquired in "real time" during nitrite infusions in nine pathogen-free New Zealand White rabbits. As little as 30 nM [MetHb] changes were detected for levels of [MetHb] that ranged from 0.80 to 5.72 microM, representing 2.2 to 14.9% of the total hemoglobin content (%MetHb). These values agreed well with on-site ex vivo cooximetry data (r2= 0.902, P < 0.0001, n = 4). The reduction of MetHb to functional hemoglobins was also carried out with intravenous injections of methylene blue (MB). As little as 10 nM changes in [MB] were detectable at levels of up to 150 nM in tissue. Our results demonstrate, for the first time, the ability of broadband DOS to noninvasively quantify real-time changes in [MetHb] and four additional chromophore concentrations ([Hb-R], [HbO2], [H2O], and [MB]) despite significant overlapping spectral features. These techniques are expected to be useful in evaluating dynamics of drug delivery and therapeutic efficacy in blood chemistry, human, and preclinical animal models.[Abstract] [Full Text] [Related] [New Search]