These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Myocardial hypoperfusion/reperfusion tolerance with exercise training in hypertension.
    Author: Reger PO, Barbe MF, Amin M, Renna BF, Hewston LA, MacDonnell SM, Houser SR, Libonati JR.
    Journal: J Appl Physiol (1985); 2006 Feb; 100(2):541-7. PubMed ID: 16223983.
    Abstract:
    The purpose of this study was to examine whether exercise training, superimposed on compensated-concentric hypertrophy, could increase myocardial hypoperfusion-reperfusion (H/R) tolerance. Female Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (age: 4 mo; N = 40) were placed into a sedentary (SED) or exercise training (TRD) group (treadmill running; 25 m/min, 1 h/day, 5 days/wk for 16 wk). Four groups were studied: WKY-SED (n = 10), WKY-TRD (n = 10), SHR-SED (n = 10), and SHR-TRD (n = 10). Blood pressure and heart rate were determined, and in vitro isolated heart performance was measured with a retrogradely perfused, Langendorff isovolumic preparation. The H/R protocol consisted of a 75% reduction in coronary flow for 17 min followed by 30 min of reperfusion. Although the rate-pressure product was significantly elevated in SHR relative to WKY, training-induced bradycardia reduced the rate-pressure product in SHR-TRD (P < 0.05) without an attenuation in systolic blood pressure. Heart-to-body weight ratio was greater in both groups of SHR vs. WKY-SED (P < 0.001). Absolute and relative myocardial tolerance to H/R was greater in WKY-TRD and both groups of SHR relative to WKY-SED (P < 0.05). Endurance training superimposed on hypertension-induced compensated hypertrophy conferred no further cardioprotection to H/R. Postreperfusion 72-kDa heat shock protein abundance was enhanced in WKY-TRD and both groups of SHR relative to WKY-SED (P < 0.05) and was highly correlated with absolute left ventricular functional recovery during reperfusion (R2= 0.86, P < 0.0001). These data suggest that both compensated hypertrophy associated with short-term hypertension and endurance training individually improved H/R and that increased postreperfusion 72-kDa heat shock protein abundance was, in part, associated with the cardioprotective phenotype observed in this study.
    [Abstract] [Full Text] [Related] [New Search]