These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Author: Hryciw DH, Ekberg J, Pollock CA, Poronnik P. Journal: Int J Biochem Cell Biol; 2006; 38(7):1036-42. PubMed ID: 16226913. Abstract: ClC-5 is a chloride (Cl(-)) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in ClC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in ClC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. ClC-5 is typically regarded as an intracellular Cl(-) channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. ClC-5 was postulated to play a key role in transporting the Cl(-) ions required to compensate for the movement of H(+) during endosomal acidification. However, more recent studies suggest additional roles for ClC-5 in the endocytosis of albumin. ClC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in ClC-5 affect the trafficking of v-H(+)-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of ClC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule.[Abstract] [Full Text] [Related] [New Search]