These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning and in vivo functional analysis by disruption of a gene encoding the gamma-butyrolactone autoregulator receptor from Streptomyces natalensis. Author: Lee KM, Lee CK, Choi SU, Park HR, Kitani S, Nihira T, Hwang YI. Journal: Arch Microbiol; 2005 Dec; 184(4):249-57. PubMed ID: 16228193. Abstract: A gene encoding a gamma-butyrolactone autoregulator receptor, which has a common activity as DNA-binding transcriptional repressors controlling secondary metabolism and/or morphological differentiation in Streptomyces, was cloned from a natamycin producer, Streptomyces natalensis. PCR using the primers designed for the two highly conserved regions of Streptomyces autoregulator receptors (BarA, FarA, ScbR, and ArpA) gave a 102-bp band. The sequence of this band had a high similarity to the expected region of a receptor gene. By genomic Southern hybridization with the 102-bp insert as a probe, a 687-bp intact receptor gene (sngR) was obtained from S. natalensis. To clarify the in vivo function of sngR, a sngR-disrupted strain was constructed, and the phenotypes were compared with those of the wild-type strain. The sngR-disruptants started natamycin production 6 h earlier and showed a 4.6-fold higher production of natamycin than the wild-type strain. In addition, the sporulation began earlier and the number of spores was tenfold more abundant than that of the wild-type strain. All the phenotypes were restored back to the original phenotypes of the wild-type strain by complementation with the intact sngR, indicating that the autoregulator receptor protein of S. natalensis acts as a primary negative regulator both on the biosynthesis of natamycin and sporulation.[Abstract] [Full Text] [Related] [New Search]