These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on long-term potentiation of the population spike component of hippocampal field potential by the tetanic stimulation of the perforant path rats: effects of a dopamine agonist, SKF-38393.
    Author: Yanagihashi R, Ishikawa T.
    Journal: Brain Res; 1992 May 01; 579(1):79-86. PubMed ID: 1623409.
    Abstract:
    Long-term potentiation of the field potentials recorded in the dentate gyrus of the hippocampus was observed in freely-moving rats by delivering a brief tetanic stimulation to the perforant path, and the effects of the D1 agonist, SKF-38393, on it was investigated. The field potential was divided into two components; excitatory postsynaptic potential (EPSP) and population spike. In Expt. I, synaptic stimulus-response (S-R) relationship, spike S-R relationship, and EPSP-spike (E-S) relationship were plotted. The estimated slope of the regression line in the spike S-R relationship was enhanced after delivery of the tetanic stimulation (10 pulse at 400 Hz), where that in synaptic S-R relationship was not enhanced. The estimated slope of the regression line in the E-S relationship was also enhanced by the tetanic stimulation. In Expt. II, time-dependent change of the field potential after tetanic stimulation was investigated. The population spike was enhanced significantly for about 2 h following tetanic stimulation, while pEPSP did not change significantly. These changes following tetanic stimulation in Expt. I and II were significantly inhibited by previous administration of SKF-38393 (10 mg/kg, i.p.), and the effect of this drug was dose-dependently antagonized by the D1 antagonist, SCH-23390 (0.1, 0.2 and 0.5 mg/kg, i.p.). These results suggest that a brief tetanic stimulation of the perforant path induces long-term potentiation of the population spike without potentiating the synaptic input in the perforant path-dentate synapses, and that potentiation of the population spike is inhibited by the dopaminergic D1 mechanism.
    [Abstract] [Full Text] [Related] [New Search]