These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of the vacuolar H(+)-pump with bafilomycin A1 does not induce acrosome reaction or activate proacrosin in mouse spermatozoa.
    Author: Codelia VA, Cortes CJ, Moreno RD.
    Journal: Biochem Biophys Res Commun; 2005 Dec 02; 337(4):1337-44. PubMed ID: 16236270.
    Abstract:
    Acrosomal protease activation is regarded as an important event triggered by acrosomal reaction and leading to sperm passage through zona pellucida. Mammalian acrosome has an internal acid pH that probably helps to maintain inactive proenzymes that otherwise could be precociously activated and prevent normal fertilization. In this work, we have studied the effect of bafilomycin A1, a potent and specific inhibitor of vacuolar H(+)-pump (V-ATPase), on acrosome reaction and proacrosin activation. We used the pH-sensitive probe Lysotracker Green DND-26 to monitor qualitatively intra-acrosomal pH in cauda epididymal mouse spermatozoa. Our results showed that loss of Lysotracker label induced by bafilomycin A1 (acrosome alkalinization) did not induce acrosome reaction or proacrosin activation. We also developed a new technique for imaging the acrosome, and for evaluating the acrosome reaction, in live mouse spermatozoa using Lysotracker DND-26. These results showed that the V-ATPase is a key regulator of mammalian acrosome pH, and that acrosome alkalinization is not the only prerequisite to activate proacrosin under in vivo conditions. Our results suggest that acrosome alkalinization and acrosome reaction are two processes that could be independently regulated during mammalian sperm capacitation.
    [Abstract] [Full Text] [Related] [New Search]