These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lens GSH depletion and electrolyte changes preceding cataracts induced by buthionine sulfoximine in suckling mice.
    Author: Calvin HI, von Hagen S, Hess JL, Patel SA, Fu SC.
    Journal: Exp Eye Res; 1992 Apr; 54(4):621-6. PubMed ID: 1623947.
    Abstract:
    Cataracts were induced in suckling mice by multiple injections of L-buthionine-S,R-sulfoximine (BSO), a specific inhibitor of GSH biosynthesis, starting on post-natal day 7. The earliest visible lens aberrations began approximately 2 days after t(o), following 99% depletion of lens GSH. Cataract development then proceeded through four stages within less than 24 hr. Elevated Na+ and Ca+ and decreased K+ were first detected in pre-cataractous (stage 0) lenses. During stage 0, lens Na+ and K+ levels displayed a significant inverse correlation; by contrast, Ca2+ levels were poorly correlated with those of Na+. The initial increase in Na+ exceeded the decrease in K+. This suggested the presence of osmotic stress prior to cataract stage 1 (developing floriform). Increased lens hydration was first apparent in stage 1, coincident with a marked elevation of Ca2+, further increase in Na+ and decrease in K+. These trends persisted in the stage 2 cataract (completed floriform). Subsequent changes in lens hydration and cation content during cataract stages 3 (degenerate floriform) and 4 (amorphous translucent) suggested substantial influx of extracellular fluid into the affected lenses. The BSO cataract may represent a useful in vivo model to study the functions of GSH in maintaining normal lens cation balance and transparency.
    [Abstract] [Full Text] [Related] [New Search]